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Rectangular cable networks supported by periodically distributed posts can be
regarded as a structure with bi-periodicity in two orthogonal directions. By
considering an equivalent system with cyclic bi-periodicity and applying the
double U-transformation technique twice, the harmonic vibration equation can
be uncoupled into a set of single variable equation, and that leads to the exact
solutions. As an example, a square cable network with a 6×6 mesh and 2×2
internal supports is considered. The solutions of natural and forced vibrations are
worked out by using the formulas obtained in the present study.
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1. INTRODUCTION

The static and dynamic analysis of cable networks or beam grillages has been
conducted by using many different methods, such as calculus of finite difference
[1, 2], the membrane analogy method [3], the transfer matrix method [4], and the
U-transformation method [5, 6]. Recently the U-transformation method has been
applied to the analysis of mode localization phenomena in disordered cable
networks by the authors [7].

Networks having periodic supports fall into the category of bi-periodic
structures. The earliest study on bi-periodic structures might have been the analysis
of compound periodic structures by Lin and McDaniel [8] using the transfer matrix
method. The wave propagation in bi-periodic structures was investigated by Gupta
[9] and Mead [10, 11] using the wave approach. The dynamics of bi-periodic
structures was studied by McDaniel and Carroll [12]. More recently, a continuous
beam with equi-distance rigid and elastic supports, subjected to a concentrated
load was analyzed by the authors [13] using the U-transformation technique [14]
and the exact solution was derived.
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However, the authors are unaware of any exact method for the dynamic
problem of cable networks with periodically distributed supports. In this study,
the natural and forced vibration analyses of the cable networks having
bi-periodicity in two orthogonal directions are investigated by using the
U-transformation technique.

Applying the double U-transformation [5] two times altogether to the governing
equations for natural or forced vibration, the equations can be uncoupled into a
set of single degree of freedom equations, leading to the exact solution for natural
frequency or dynamic displacement.

The present method can be applied to static and dynamic analysis of rectangular
beam grids and diagonal networks with periodically distributed supports. It is
believed that this is the first analytical exact solution for this kind of problem.

2. UNCOUPLING OF THE DYNAMIC EQUATION AND DERIVATION OF THE
EXPLICIT SOLUTION

The network considered is made up of two sets of pretensioned straight cables
orthogonal to each other with fixed ends, meeting at spot-welded nodes and
supported by periodically distributed posts. For generality, consider an n1 × n2

rectangular network with fixed ends at four edges as shown in Figure 1 where the
solid circles denote the nodes supported by the posts. There are
(m1 −1)× (m2 −1) internal supports.

The equivalent network with cyclic periodicity in x- and y-directions can be
produced by using image method [5, 6]. At the outset, consider the extended
network with 2n1 ×2n2 mesh shown in Figure 2 where the loading pattern is
anti-symmetric with respect to two symmetric planes of the extended network.
Moreover we regard the extended network as one having cyclic bi-periodicity in
x- and y-directions, i.e., each pair of nodes (0, k) and (2n1, k) (k=0, 1, 2, . . . , 2n2)

Figure 1. n1 × n2 network with (m1 −1)× (m2 −1) supports.
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Figure 2. Equivalent network with 2n1 ×2n2 mesh and cyclic periodicity in x- and y-directions.

and ( j, 0) and ( j, 2n2) ( j=0, 1, 2, . . . , 2n1) may be imaginarily put together and
treated as one point in mathematics. The boundary condition of the original
system can be satisfied automatically in its equivalent network where the
additional supports located at boundary and symmetric lines are necessary in
order to form the cyclic bi-periodic system, but their supporting reactions being
identically equal to zero.

2.1.   

Consider the equivalent network with no supports and lumped mass M for each
node. The harmonic vibration equation for all nodes can be expressed as

(2K1 +2K2 −Mv2)w( j,k) −K1(w( j+1,k) +w( j−1,k))−K2(w( j,k+1) +w( j,k−1))=F( j,k)

j=1, 2, . . . , 2n1, k=1, 2, . . . , 2n2 (2.1)

K1 =
T1

a
, K2 =

T2

b
(2.2)
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with w(2n1 +1,k) 0w(1,k), w( j,2n2 +1) 0w( j,1) due to the cyclic periodicity, in which w( j,k)

and F( j,k) denote the amplitudes of the transverse displacement and loading of node
( j, k) respectively; v denotes the vibration frequency; T1, T2 denote the
pretensions of the cables in the x- and y-directions and a, b denote the spacing
of y- and x-cables respectively.

In order to uncouple the simultaneous equations (2.1), introduce the double
U-transformation

w( j,k) =
1

z2n1z2n2

s
2n1

r=1

s
2n2

s=1

ei( j−1)rc1 ei(k−1)sc2q(r,s)

j=1, 2, . . . , 2n1; k=1, 2, . . . , 2n2; (2.3a)

with the inverse transformation

q(r,s) =
1

z2n1z2n2

s
2n1

j=1

s
2n2

k=1

e−i( j−1)rc1 e−i(k−1)sc2w( j,k)

r=1, 2, . . . , 2n1; s=1, 2, . . . , 2n2; (2.3b)

and

c1 = p/n1, c2 = p/n2, i=z−1. (2.4)

The harmonic vibration equation (2.1) can be expressed in terms of the generalized
displacement q(r,s) as

(2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2)q(r,s) = f(r,s)

r=1, 2, . . . , 2n1; s=1, 2, . . . , 2n2 (2.5)

where

f(r,s) =
1

z2n1z2n2

s
2n1

j=1

s
2n2

k=1

e−i( j−1)rc1 e−i(k−1)sc2F( j,k). (2.6)

For the equivalent network, the loading must be anti-symmetric with respect to
two symmetric planes, i.e.,

F(2n1 − j,2n2 − k) =F( j,k)

F(2n1 − j,k) =F( j,2n2 − k) =−F( j,k), j=1, 2, . . . , n1; k=1, 2, . . . , n2. (2.7)

Substituting equation (2.7) into equation (2.6) yields

f(r,s) =
−4 eirc1 eisc2

z2n1z2n2

s
n1 −1

j=1

s
n2 −1

k=1

sin jrc1 sin ksc2F( j,k). (2.8)

As a result

f(r,s) 0 0 r= n1, 2n1 or s= n2, 2n2 (2.9a)
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and

q(r,s) 0 0 r= n1, 2n1 or s= n2, 2n2. (2.9b)

Consider now the natural vibration, i.e., f(r,s) = 0. The independent frequency
equation for the network without supports can be expressed as

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2 =0

r=1, 2, . . . , n1 −1; s=1, 2, . . . , n2 −1; (2.10a)

or

v2 =
1
M

(2K1 +2K2 −2K1 cos rc1 −2K2 cos sc2). (2.10b)

Now consider the natural mode. Noting that cos (2n1 − r)c1 0 cos rc1 and
cos (2n2 − s)c2 0 cos sc2, when we replace r or/and s by 2n1 − r or/and 2n2 − s
respectively, the frequency equation (2.10a) is invariable. Therefore there are four
non-trivial solutions, q(r,s), q(2n1 − r,s), q(r,2n2 − s), q(2n1 − r,2n2 − s) of equation (2.5) with f(r,s)

vanishing corresponding to each natural frequency. The four generalized
displacements with non-zero values represent four rotating modes of the
equivalent network with cyclic periodicity. These rotating modes move in the
positive or negative directions of x- and y-axes respectively.

Because of the anti-symmetry of the displacement w( j,k), equations (2.3b) can be
written as

q(r,s) =
−4 eirc1 eisc2

z2n1z2n2

s
n1 −1

j=1

s
n2 −1

k=1

sin jrc1 sin ksc2w( j,k) (2.11)

which indicates that q(r,s) corresponding to the anti-symmetric mode must involve
the complex factor eirc1 eisc2 and a real factor an1 −1

j=1 an2 −1
k=1 sin jrc1 sin ksc2w( j,k).

Noting that sin j(2n1 − r)c1 =−sin jrc1 and sin k(2n2 − s)c2 =−sin ksc2, in
order to find the anti-symmetric mode, let

q(r,s) = c eirc1 eisc2, q(2n1 − r,2n2 − s) = c ei(2n1 − r)c1 ei(2n2 − s)c2,

q(2n1 − r,s) =−c ei(2n1 − r)c1 eisc2, q(r,2n2 − s) =−c eirc1 ei(2n2 − s)c2, (2.12)

with the other generalized displacements vanishing, in which c denotes an arbitrary
real constant and r and s are fixed integers. Substituting equation (2.12) into the
double U-transformation yields the mode

w( j,k) = sin jrc1 sin ksc2 j=1, 2, . . . , 2n1, k=1, 2, . . . , 2n2 (2.13)

neglecting an arbitrary constant factor. The mode is only dependent on a pair of
integers r and s representing the numbers of the half waves in x- and y-directions
respectively for the original network.
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Let us return to consider the forced vibration. The solution for q(r,s) of equations
(2.5) and (2.8) can be written as

q(r,s) =
f(r,s)

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2

r$ n1, 2n1 and s$ n2, 2n2 (2.14)

with the other q(r,s) vanishing, i.e., equation (2.9b). Substituting equations (2.14)
and (2.6) into (2.3a) results in

w( j,k) = s
2n1

j1 =1

s
2n2

k1 =1

b*( j,k)( j1,k1)F( j1,k1) (2.15)

where

b*( j,k)( j1,k1) =
1

4n1n2
s

2n1 −1

r=1

s
2n2 −1

s=1

ei( j− j1)rc1 ei(k− k1)sc2

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2

j, j1 =1, 2, . . . , 2n1, k, k1 =1, 2, . . . , 2n2 (2.16)

b*( j,k)( j1,k1) is the harmonic influence coefficient for the 2n1 ×2n2 equivalent network
without the post-supports. The * does not denote a complex conjugation in this
paper.

2.2.      

Consider now the equivalent network shown in Figure 2. At the outset, one can
replace the supports by the supporting reactions. By invoking the superposition
principle, the harmonic vibration equation can be written in terms of the harmonic
influence coefficients as

w( j,k) =w0
( j,k) +w*( j,k) (2.17)

and

w0
( j,k) = s

2m1

j1 =1

s
2m2

k1 =1

b*( j,k)( j1p1,k1p2)F( j1,k1) (2.18a)

w*( j,k) = s
2n1

j1 =1

s
2n2

k1 =1

b*( j,k)( j1,k1)F( j1,k1) (2.18b)

where P( j1,k1) denotes the supporting reaction acting at the node ( j1p1, k1p2); p1, p2

are the structural parameters as shown in Figure 1; w*(j,k) and w0
(j,k) represents the

displacements caused by the loading and the supporting reactions acting on the
equivalent network without the post-supports, respectively; b*(j,k)(j1,k1) has been
defined as equation (2.16).
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Substituting equations (2.16) and (2.7) into equation (2.18b) results in

w*(j,k) =
4

n1n2
s

n1 −1

r=1

s
n2 −1

s=1

s
n1 −1

j1 =1

s
n2 −1

k1 =1

×
sin jrc1 sin ksc2 sin j1rc1 sin k1sc2

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2
F(j1,k1). (2.19)

It can be verified that w*(j,k) shown in equation (2.19) satisfies the anti-symmetric
condition and boundary condition of the original network with n1 × n2 mesh, i.e.,
w*(2n1 − j,2n2 − k) =w*(j,k); w*(2n1 − j,k) =w*(j,2n2 − k) =−w*(j,k), j=1, 2, . . . , n1, k=1, 2, . . . , n2

and w*(j,k) = 0, j=0, n1 or k=0, n2.
The displacements at supported nodes must be equal to zero, i.e.,

w0
(jp1,kp2) +w*(jp1,kp2) = 0 j=1, 2, . . . , 2m1, k=1, 2, . . . , 2m2. (2.20)

Introducing the notation

W*(j,k) 0w*(jp1,kp2) (2.21)

into the restrained condition (2.20) yields

s
2m1

j1 =1

s
2m2

k1 =1

b(j,k)(j1,k1)P(j1,k1) =−W*(j,k) j=1, 2, . . . , 2m1, k=1, 2, . . . , 2m2

(2.22)

where

b(j,k)(j1,k1) 0 b*(jp1,kp2)(j1p1,k1p2)

=
1

4n1n2
s

2n1 −1

r=1

s
2n2 −1

s=1

ei(j− j1)r81 ei(k− k1)s82

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2

(2.23)

with

81 = p/m1, 82 = p/m2 (2.24)

W*(j,k) has been determined in equations (2.21) and (2.19).
It can be shown that the coefficients b(j,k)(j1,k1) of the simultaneous equations (2.22)

have the cyclic periodicity, i.e.,

b(j,k)(1,k1) = b(j+1,k)(2,k1) = · · ·= b(j−1,k)(2m1,k1)

j=1, 2, . . . , 2m1; k, k1 =1, 2, . . . , 2m2 (2.25a)

and

b(j,k)(j1,1) = b(j,k+1)(j1,2) = · · ·= b(j,k−1)(j1,2m2)

j, j1 =1, 2, . . . , 2m1; k=1, 2, . . . , 2m2. (2.25b)
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Therefore, the independent coefficients are b(j,k)(1,1) (j=1, 2, . . . , 2m1,
k=1, 2, . . . , 2m2). The simultaneous equation (2.22) can be uncoupled by
applying the double U-transformation.

Letting

P(j,k) =
1

z2m1z2m2

s
2m1

r=1

s
2m2

s=1

ei(j−1)r81 ei(k−1)s82p(r,s) (2.26a)

with its inverse transformation

p(r,s) =
1

z2m1z2m2

s
2m1

j=1

s
2m2

k=1

e−i(j−1)r81 e−i(k−1)s82P(j,k) (2.26b)

in which 81 = p/m1 and 82 = p/m2, and noting equations (2.25a, b), equation
(2.22) can be expressed in terms of the generalized supporting reaction p(r,s) as

$ s
2m1

u=1

s
2m2

n=1

e−i(u−1)r81 e−i(n−1)s82b(u,n)(1,1)%p(r,s) =−Q*(r,s) (2.27)

Q*(r,s) =
1

z2m1z2m2

s
2m1

j=1

s
2m2

k=1

e−i(j−1)r81 e−i(k−1)s82W*(j,k) (2.28)

b(u,n)(1,1) =
1

4n1n2
s

2n1 −1

r=1

s
2n2 −1

s=1

ei(u−1)r81 ei(n−1)s82

2K1 +2K2 −Mv2 −2K1 cos rc1 −2K2 cos sc2
. (2.29)

Substituting equation (2.29) into equation (2.27) results in

p(r,s) =−
Q*(r,s)
A(r,s)

r=1, 2, . . . , 2m1; s=1, 2, . . . , 2m2 (2.30)

where

A(r,s) =
1

p1p2
s
p1

j=1

s
p2

k=1

{2K1 +2K2 −Mv2 −2K1 cos [r+(j−1)2m1]c1

−2K2 cos [s+(k−1)2m2]c2}−1. (2.31)

If the specific load and structural parameters are given, the amplitudes of the
nodal displacement and supporting reaction can be calculated from the above
equations.

Consider now the natural vibration, i.e., F(j,k), w*(j,k) and Q*(r,s) are equal to zero,
equation (2.30) becomes

p(r,s)A(r,s) = 0 r=1, 2, . . . , 2m1; s=1, 2, . . . , 2m2. (2.32)

It can be proved that

p(r,s) 0 0 r=m1, 2m1 or s=m2, 2m2.
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When the generalized supporting reactions p(r,s) are not identically equal to zero,
the independent frequency equation is

A(r,s) = 0 r=1, 2, . . . , m1 −1; s=1, 2, . . . , m2 −1 (2.33)

and A(r,s) is the function of v as shown in equation (2.31).
Consider now the natural mode. From the definition of A(r,s) shown in equation

(2.31), it can be verified that A(r,s) 0A(2m1 − r,s) 0A(r,2m2 − s) 0A(2m1 − r,2m2 − s). Corre-
sponding to each natural frequency satisfying A(r,s) = 0, four generalized
supporting reactions p(r,s), p(2m1 − r,s), p(r,2m2 − s), p(2m1 − r,2m2 − s) can be equal to different
constants for the extended network. We need to find the anti-symmetric mode. We
must let

p(r,s) = c eir81 eis82, p(2m1 − r,2m2 − s) = c ei(2m1 − r)81 ei(2m2 − s)82,

p(2m1 − r,s) =−c ei(2m1 − r)81 eis82, p(r,2m2 − s) =−c eir81 ei(2m2 − s)82, (2.34)

with the other p(j,k) vanishing, in which c denotes an arbitrary real constant.
Substituting equation (2.34) into equation (2.26a) yields

P(j,k) = c sin jr81 sin ks82 j=1, 2, . . . , 2m1, k=1, 2, . . . , 2m2. (2.35)

The corresponding mode can be found by substituting equation (2.35) and the
values of r, s and v into equation (2.18a).

When the supporting reactions are identically equal to zero, i.e., all of the
supported nodes lie in the nodal lines of the mode for the network without the
post-supports, the frequency equation should be expressed as equation (2.10a) in
which r=m1, 2m1, . . . , (p1 −1)m1 or s=m2, 2m2, . . . , (p2 −1)m2.

Figure 3. 6×6 network with 2×2 supports.
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T 1

Natural frequency (1)

(r, s) (1, 1) (1, 2) (2, 1) (2, 2)

4 4 4 4
v2 4−z6 2 2 4−z2

4+z6 6 6 4+z2

Multiplier K/M

3. EXAMPLE

Consider a uniform square network with 6×6 mesh and 2×2 internal
supports as shown in Figure 3. The specific structural parameters can be written
down as

n1 = n2 =6, m1 =m2 =3, p1 = p2 =2, c1 =c2 =
p

6
, 81 =82 =

p

3
;

a= b, T1 =T2, K1 =K2 0K. (3.1)

3.1.  

When the supporting reactions are not identically equal to zero, the frequency
equation should be equation (2.33). Substituting equations (3.1) and (2.31) into
equation (2.33) gives

1
4

s
2

j=1

s
2

k=1 64K−Mv2 −2K cos [r+6( j−1)]
p

6
−2K cos [s+6(k−1)]

p

67
−1

=0

r=1, 2; s=1, 2. (3.2)

The roots for v2 of the above frequency equation are summarized in Table 1.
When the supporting reactions are identically equal to zero, the corresponding

frequency equation can be obtained from equation (2.10a), where one of r and s
must be equal to 3 for the present case, i.e.,

4K−Mv2 −2K cos r
p

6
−2K cos s

p

6
=0

r=3, s=1, 2, . . . , 5 and s=3, r=1, 2, . . . , 5 (3.3)

because r and s on the left-hand side of equation (3.3) are in agreement with the
numbers of the half wave in x- and y-directions for the original network. When
r or s is equal to 3, all of the supported nodes must necessarily lie on the nodal
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T 2

Natural frequency (2)

(r, s) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (1, 3) (2, 3) (4, 3) (5, 3)

v2 4−z3 3 4 5 4+z3 4−z3 3 5 4+z3

Multiplier K/M

lines of the corresponding mode, i.e., the supporting reactions are identically equal
to zero. The corresponding frequencies can be expressed as

v2 =
K
M 04−2 cos r

p

6
−2 cos s

p

61
r=3, s=1, 2, . . . , 5 and s=3, r=1, 2, . . . , 5. (3.4)

The result is summarized in Table 2.
The total number of natural frequencies is equal to 21 which is in agreement

with the number of freedoms of the original network.
Next, consider the natural modes corresponding to the supporting reactions that

do not vanish. The mode can be obtained by inserting the values of r, s, v and
the supporting reactions shown in equation (2.35) into equation (2.18a). Consider
now the basic mode corresponding to the lowest natural frequency. The parameter
r, s, v can be obtained from Table 1 as

r=1, s=1 (3.5a)

T 3

Natural mode w( j,k) corresponding to v2 = (4−z6)(K/M)

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 1
4

z6
8

1
2

z6
8

1
4 0

2 0
z6
8 0

z6
4 0

z6
8 0 P(j,k) =−

3z6
4 K

3 0 1
2

z6
4 1

z6
4

1
2 0 j, k=1, 2

4 0
z6
8 0

z6
4 0

z6
8 0

5 0 1
4

z6
8

1
2

z6
8

1
4 0

6 0 0 0 0 0 0 0
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T 4

Natural mode 1, w(j,k) corresponding to v2 =4K/M and (r, s)= (1, 1)

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 0 −1
2 0 −1

2 0 0 P(1,1) =P(1,2)

2 0 1
2 0 1 0 1

2 0 =P(2,1) =P(2,2) = 0*

3 0 0 −1 0 −1 0 0

4 0 1
2 0 1 0 1

2 0

5 0 0 −1
2 0 −1

2 0 0

6 0 0 0 0 0 0 0

* If K1 $K2, the supporting reactions are non-zero.

and

v2 = (4−z6)
K
M

. (3.5b)

Substituting equations (3.1) and (3.5a, b) into equation (2.35), gives

P(j,k) = 3
4c, P(6− j,6− k) =P(j,k), P(6− j,k) =P(j,6− k) =−P(j,k) j, k=1, 2

(3.6)

while the other P(j,k) vanished. Inserting equations (2.16), (3.1), (3.5b) and (3.6) into
equation (2.18a), the mode can be found as shown in Table 3, in which the mode
has been normalized according to the maximum amplitude being 1.

Obviously, the mode shown in Table 3 satisfies the boundary condition and
restrained condition at supported nodes. It can be verified that the free vibration
equation shown in equation (2.1) with F(j,k) vanishing is satisfied at the free nodes.

T 5

Natural mode 2, w(j,k) corresponding to v2 =4K/M and (r, s)= (1, 2)

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 0 −1
2 0 1

2 0 0 P(1,1) =P(2,1) =K

2 0 1
2 0 0 0 −1

2 0 P(1,2) =P(2,2) =−K

3 0 0 −1 0 1 0 0

4 0 1
2 0 0 0 −1

2 0

5 0 0 −1
2 0 1

2 0 0

6 0 0 0 0 0 0 0
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T 6

Natural mode 3, w(j,k) corresponding to v2 =4K/M and (r, s)= (2, 1)

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 0 1/2 0 1/2 0 0 P(1,1) =P(1,2) =K

2 0 −1/2 0 −1 0 −1/2 0 P(2,1) =P(2,2) =−K

3 0 0 0 0 0 0 0

4 0 1/2 0 1 0 1/2 0

5 0 0 −1/2 0 −1/2 0 0

6 0 0 0 0 0 0 0

Noting Tables 1 and 2, it is interesting that there are five independent modes
corresponding to one natural frequency, i.e., v2 =4K/M, where four modes are
corresponding to P(j,k) $ 0. They can be found by using the same procedure
described in the above. The results are shown in Tables 4–7.

The other mode where all the supported nodes lie in its nodal lines can be
obtained by substituting equations (3.1) and r= s=3 into equation (2.13) as

w(j,k) = sin j
p

2
sin k

p

2
. (3.7)

The results are as shown in Table 8.
In the same way as the above, the other modes can also be found without any

difficulty.

T 7

Natural mode 4, w(j,k) corresponding to v2 =4K/M and (r, s)= (2, 2)

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 0 −1 0 1 0 0 P(1,1) =P(2,2) = 0*

2 0 1 0 0 0 −1 0 P(2,1) =P(1,2) =−P(1,1)

3 0 0 0 0 0 0 0

4 0 −1 0 0 0 1 0

5 0 0 1 0 −1 0 0

6 0 0 0 0 0 0 0

* If K1 $K2, the supporting reactions are non-zero.
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T 8

Natural mode 5, w(j,k) corresponding to v2 =4K/M

j k 0 1 2 3 4 5 6 P(j,k)

0 0 0 0 0 0 0 0

1 0 1 0 −1 0 1 0 P(1,1) =P(1,2)

2 0 0 0 0 0 0 0 =P(2,1) =P(2,2) 0 0

3 0 −1 0 1 0 −1 0

4 0 0 0 0 0 0 0

5 0 1 0 −1 0 1 0

6 0 0 0 0 0 0 0

3.2.  

Consider the same network shown in Figure 3 subjected to the harmonic loading
P eivt acting at its center, i.e.,

F(3,3) =F(9,9) =P, F(3,9) =F(9,3) =−P

F(j,k) = 0 j$ 3, 9 or k$ 3, 9. (3.8)

Noting the definition of W*(j,k) shown in equation (2.21), substituting equations
(3.1), (3,8) and (2.16) into equation (2.18b) results in

W*(1,1) =W*(1,2) =W*(2,1) =W*(2,2) =
2P

K(4−V)(4−8V+V2)

W*(6− j,6− k) =W*(j,k), W*(6− j,k) =W*(j,6− k) =−W*(j,k) j, k=1, 2.

W*(j,k) = 0 j=3, 6 or k=3, 6 (3.9)

where V denotes the non-dimensional parameter of frequency as shown in the
following equation

V=
Mv2

K
. (3.10)

Substituting equations (3.1) and (3.9) into equation (2.28) yields

Q*(1,1) = (1− iz3)W*(1,1), Q*(5,5) = (1+ iz3)W*(1,1)

Q*(1,5) =Q*(5,1) =2W*(1,1) (3.11)

while the other Q*(r,s) vanished.
Inserting equation (3.1) into equation (2.31), gives

A(1,1) =A(1,5) =A(5,1) =A(5,5) =
1
K

10−8V+V2

(4−V)(4−8V+V2)
. (3.12)
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Substituting equations (3.11) and (3.12) into equation (2.30) yields

p(1,1) =−
2(1− iz3)P
10−8V+V2, p(5,5) =−

2(1+ iz3)P
10−8V+V2,

p(1,5) = p(5,1) =−
4P

10−8V+V2, p(r,s) = 0, r$ 1, 5 or s$ 1, 5.

(3.13)

Substituting equations (3.1) and (3.13) into equation (2.26a), the amplitudes of
supporting reaction can be obtained as

P(1,1) =P(1,2) =P(2,1) =P(2,2) =−
2P

10−8V+V2

P(6− j,6− k) =P(j,k), P(j,6− k) =P(6− j,k) =−P(j,k) j, k=1, 2

P(j,k) = 0 j=3, 6 or k=3, 6. (3.14)

All of the nodal displacements can be found by substituting equations (3.1), (3.8),
(3.14) and (2.16) into equations (2.18a, b) and (2.17). Consider now the
displacement of the loaded node, i.e., w(3,3). The final result can be expressed as

w(3,3) =H(V)
P
K

(3.15)

where

H(V)=
(V2 −8V)2 +27(V2 −8V)+178

(4−V)(10−8V+V2)(13−8V+V2)
(3.16)

where V has been defined as shown in equation (3.10).
From equation (3.16), it can be shown that, when H(V) approaches a finite value

at a resonance frequency, the force is acting at a nodal point/line of the
corresponding mode.

Figure 4. Frequency response curve, w(3,3) versus V.
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The frequency response curve governed by equations (3.15) and (3.16),w(3,3) versus
V is plotted in Figure 4.

4. CONCLUSION

In the present work, the application of the double U-transformation has been
extended to dynamic analysis of rectangular cable networks with periodic supports
in x- and y-directions. The structures considered belong to the category of
bi-periodic structures. In order to fully utilize the periodicity property, the method
presented in this paper requires the application of the double U-transformation two
times altogether. At first, by applying the double U-transformation to the harmonic
vibration equation, the harmonic influence coefficients are found. Then by applying
the double U-transformation to the governing equation in terms of the harmonic
influence coefficients, it is uncoupled into a set of single degree of freedom equations
and that leads to the exact solution.
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